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Abstract

Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived
exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low
specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting
and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular
diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not
readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often
restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish
populations.
DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of
complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the
high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples
on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity
of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the
metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a
surveillance context and highlight the unique technical and regulatory challenges that must be considered when
implementing high-throughput sequencing technologies into sensitive diagnostic applications.
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Background

Increasing globalization of trade and tourism, along with chang-
ing climates, is expected to further increase the rate of biological
invasions over coming decades [1–3]. Insects form a dominant
component of this global spread of invasive species [4], posing a

major threat to agroecosystems [5], the environment [6], and hu-
man health [7] through disruption of ecological networks, plant
herbivory, and the transmission of pathogens and disease [8].
Once established in a new environment, ongoing containment
and control of invasive insect pests imposes substantial costs
to industry, government, and private landowners [8], and conse-
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2 DNA metabarcoding for high-throughput insect surveillance

quently major efforts are made to forecast incursion risk [9–11]
and implement quarantine of entry pathways [12–14]. Despite
these measures, the exponential increase in global movement
of food, commerce, and humans complicates traceability and
makes quarantine inspection of more than a fraction of arriv-
ing cargo an impossible task [15, 16]. Therefore, proactive post-
border surveillance within agricultural and natural landscapes
is becoming an increasingly important component of effective
biosecurity programmes, aiming to detect invasive species early
before populations escalate or spread and eradication becomes
unfeasible [17–19].

Insect invasions can initiate and disperse across vast and
highly heterogenous landscapes [20], and therefore surveillance
programmes often involve extensive trapping conducted across
a range of spatial scales, from large geographic areas to pre-
cise crop-monitoring activities within agricultural properties
[21]. Because it is generally unclear whether a new introduc-
tion has occurred or what species it may be, surveillance pro-
grammes can extend over many years and target diverse tax-
onomic groups [22, 23]. In many cases surveillance traps will
capture non-target endemic species in vast excess of the tar-
get pests and the sheer number of specimens that need to be
sorted through and identified by highly trained entomologists
forms a major diagnostic bottleneck. While insect diagnostics
still largely relies on traditional morphological examination [24],
in recent years this has been supplemented by a range of molec-
ular techniques that allow standardized identification of a wide
range of taxa without specialist taxonomic expertise (Table 1).
DNA barcoding in particular has become a central component of
the modern diagnostic toolbox, owing to the ability to compare
a single unknown specimen against many potential species in a
single assay, and standardized protocols that allow transparent
and objective comparison of specimen identifications between
laboratories, regulatory agencies, and trading partners [24–26].
Despite these advantages, the time-consuming process of con-
ducting single PCR and sequencing reactions on individual spec-
imens has restricted the use of DNA barcoding to confirming the
identity of specimens already deemed suspect by prior morpho-
logical sorting, or for identification of taxa or life stages where a
taxonomic key may not be available or key diagnostic structures
are degraded or missing [24, 27]. Without access to a scalable
and cost-effective diagnostic method for large trap catches, cur-
rent surveillance programmes generally do not identify all spec-
imens to species level [23, 28]. Instead, target lists are confined
to relatively few priority pest species identified by previous risk
assessment [9] or statistical methods are used to select only a
subset of specimens for species-level identification [29]. These
restrictions can result in the non-detection of unanticipated or
cryptic invasive species that are not being actively monitored for
[30].

In order to overcome the limitations of current identifica-
tion methods for processing large numbers of specimens, re-
cent studies have looked to high-throughput sequencing (HTS)
technologies to allow DNA barcode-based identification to be
conducted in a massively parallel manner. This process, termed
“metabarcoding” [31] or “marker gene sequencing” [32], gener-
ates a large number of individual barcode sequences in a single
reaction, enabling the simultaneous identification of individuals
in large mixed communities [33, 34], such as a trap sample con-
taining many different insect species. The ability to rapidly and
cost-effectively survey biodiversity has led to metabarcoding be-
ing taken up across numerous fields of applied ecology [34–37],
including the identification of invasive species (Fig. 1A) [33, 38–
40]. By identifying both endemic and potential exotic species in

a bulk DNA analysis approach, metabarcoding can obviate the
time-consuming specimen sorting required by previous molec-
ular and morphological diagnostic methods, and allow detec-
tion of not just key pests but also other unanticipated species
that are not being actively searched for [38, 41, 42]. This aspect
is particularly advantageous for the detection of environmental
threats because when one considers impacts beyond just agri-
culture and the time lag that can occur between introduction of
a new species and perceptible damage to the environment [43], it
becomes clear that there are far more invasive species of threat
than can be identified by risk assessment and incorporated into
target lists [23, 44]. A further advantage arises from the ability of
HTS to count occurrences of specific sequences in a mixed sam-
ple [45], potentially allowing simultaneous pest identification
and population size estimation. Finally, the rapidly increasing
output of HTS technologies enables multiplexing of hundreds of
trap samples in a single sequencing run, providing an avenue to
dramatically scale up insect surveillance to the level required for
effective, affordable, and proactive management response.

Despite the advantages that metabarcoding may offer to
insect surveillance programs, uptake of new diagnostic tools
into operational use depends on more than just the cost-
effectiveness of the tool, but also on factors such as ease of
use, accuracy, reproducibility, and perceived usefulness to the
end users, as well as compatibility with existing policy frame-
works [46, 47]. With the introduction of the World Trade Or-
ganisation Agreement on the Application of Sanitary and Phy-
tosanitary measures (SPS) came new obligations for exporting
nations to demonstrate freedom of a geographic area from par-
ticular pests using scientifically rigorous surveillance practices
[48]. This agreement has in turn led to harmonization of routine
diagnostic procedures into internationally standardized proto-
cols to ensure that all end users are aware of the particulars in-
volved and therefore committed to accepting any risk manage-
ment actions that arise through its use [46, 49]. The SPS agree-
ment recognizes the International Plant Protection Convention
(IPPC) and the World Organisation of Animal Health (OIE) as
the international standard-setting bodies for plant and animal
health, respectively [48], and adoption of new standards stems
from exhaustive workgroup efforts by these agencies [13, 50].
While the opportunities that HTS approaches could offer have
been widely recognized by the diagnostics community [51, 52],
because of the relative infancy of the technology, standards and
guidelines around their use is a rapidly evolving space and val-
idated protocols do not yet exist. Despite this, there is flexibil-
ity within the SPS framework for trading partners to introduce
novel sanitary or surveillance procedures if it can be demon-
strated that they are equivalent to or better than previous meth-
ods [49] and both the IPPC and OIE have now released guidelines
for those laboratories preparing to implement HTS approaches
in routine diagnostics applications. These guidelines highlight
the need for robust experimental designs, assay validation, and
quality assurance [51, 53, 54], reflecting recent discussions in the
wider metabarcoding community [55]. In this review we explore
the application of metabarcoding for high-throughput species-
level identification of insects, providing an overview of common
metabarcoding workflows (Fig. 2) and considerations required
at each step to ensure reliable detection and quantification of
taxa within complex mixed communities. We further discuss
the unique technical and regulatory challenges of integrating
broad-spectrum HTS assays into diagnostic laboratories and of-
fer a perspective on the future adoption of high-throughput in-
sect surveillance within international biosecurity frameworks.
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Table 1: Methods used for insect identification, with suitability assessed according to accuracy, expertise, general applicability, time, and
throughput criteria

Identification method
Taxonomic
expertise

Identify specific
taxa

Identify broad
range of taxa Throughput level

Time per
identification

Morphological
Microscopic examination High High∗ High∗ Low Moderate

Molecular
PCR–restriction fragment

length polymorphism
Low Moderate Low Moderate Moderate

DNA barcoding Low High High Low Moderate
Quantitative PCR/droplet

digital PCR
Low High Low High Low

Loop-mediated isothermal
amplification

Low High Low Low Low

Metabarcoding Low High High Very high Low

∗This morphological identification score assumes a high level of taxonomic knowledge and a low human error rate.
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Figure 1: Metabarcoding in the literature. (A) Published articles obtained from Scopus, Crossref, and PubMed searches on 6 June 2019 for all metabarcoding studies, and

those containing keywords in title or abstract relevant to invasive insect surveillance. (B) Sequencing platforms used in the above metabarcoding studies displayed as
a proportion for each year.

Review
Selecting a taxonomic marker

Appropriate selection of a taxonomic marker or barcode locus is
a critical first step in design of a metabarcoding assay because
all downstream species detection and identification will rely on
how conserved this marker is across taxa, and the discrimina-
tory power of the nucleotide variation contained within it [56].

The markers most commonly used in metabarcoding studies are
those already widely adopted for conventional DNA barcoding,
and therefore the mitochondrial cytochrome oxidase I (COI) lo-
cus has been the most widely used marker for metabarcoding
of insects to date. The 658-bp region of COI [57] used for con-
ventional DNA barcoding has a strong track record of delivering
species-level identification of insect pests [58]; however, many
HTS platforms impose strict limitations in molecule length that
can be sequenced (Table 2) and therefore smaller stretches of the
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Figure 2: Overview of common metabarcoding workflows for identification of trapped insect species

conventional barcode loci or “mini-barcodes” must be used [59].
Nevertheless, research into degraded DNA samples has shown
that singular COI barcode of sizes between 135 [60] and 250 bp
[61] can reliably distinguish most animal species; however, ap-
propriate placement within the larger barcode region is essen-
tial [62]. Despite the excellent taxonomic resolution provided
by COI, since its application to metabarcoding a number of fur-
ther limitations have become particularly apparent. Because COI
is a protein-coding gene, the third position of codons can be
variable, leaving no strictly conserved nucleotide sites for de-

sign of universal PCR primers [63]. This mismatch inevitably
leads to primers having variable affinity for different template
molecules, biasing the amplification towards well-matched taxa
and failing to amplify others [64]. Unlike conventional DNA bar-
coding where a failed amplification will result in a noticeably ab-
sent PCR product, in a bulk sample failed amplification of a par-
ticular taxon will be masked by the recovery of sequences from
other taxa and therefore will go unnoticed [63]. A further issue
inherent to mitochondrial loci such as COI is the proliferation
of nuclear mitochondrial pseudogenes (numts) in many insect
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orders [65–67], the result of historical recombination between
the mitochondrial and nuclear genomes [68]. Co-amplification
or preferential amplification of these pseudogenes instead of the
true mitochondrial locus can complicate species identification
[67] and result in overestimation of taxonomic diversity in the
sample [69].

As a result of the aforementioned issues, as well as the in-
ability for COI to differentiate certain pest groups [70], a range of
alternative universal barcode markers have been proposed (re-
viewed by Freeland [56]). Ribosomal RNA (rRNA) genes are par-
ticularly appealing owing to their high copy number and stem-
loop structure that consists of highly conserved core sequences
for primer binding, interspaced with variable regions providing
taxonomic resolution [71, 72]. Despite this, rRNA regions are on
average more conserved than COI and therefore while appro-
priate for reconstructing higher level relationships they require
longer spans of nucleotides to be informative at the species
level. For single-specimen barcoding this can be overcome by
concatenating several markers to increase phylogenetic reso-
lution [73]; however, this presents a challenge for metabarcod-
ing of mixed communities because there is no way of knowing
whether 2 non-overlapping markers are from the same individ-
ual [74]. Therefore, while multi-locus approaches can be useful
for expanding the taxonomic diversity an assay can recover [75–
77], in particular cross-kingdom diversity (Box 2), they do not
necessarily provide greater resolution [45]. Consequently, closely
related and difficult-to-diagnose pest taxa may require further
studies to identify appropriate diagnostic loci [78], or the devel-
opment of novel analytical methods to integrate taxonomic as-
signments from multiple independent barcode loci. Finally, the
application of alternative markers to insect diagnostics will suf-
fer from a lack of reference sequence data because many taxa,
including those of economic importance, currently only have
COI sequence data publicly available (Fig. 3B, 3C). Therefore, be-
cause species-level resolution is a requirement of many diagnos-
tic standards [24, 49, 79], for the taxa in which it has sufficient
resolution, the high mutation rate and extensive reference infor-
mation obtainable for COI will maximize the utility of metabar-
coding within a broad-spectrum surveillance programme [80].

Box 1:
Reference sequence databases

As with conventional DNA barcoding, accurate taxonomic
assignment in metabarcoding studies relies on a well-
curated reference database of DNA marker sequences tied
to vouchered morphological specimens to compare query
sequences against [81]. The primary public nucleotide
databases of relevance to insect metabarcoding are the Bar-
code of Life Data System (BOLD) [82] and the NCBI Gen-
Bank database [83]. While GenBank hosts greater overall
sequence data, BOLD represents a curated DNA barcoding
database that aims to maintain consistent links between
sequences, validated morphological specimens, and asso-
ciated specimen collection metadata [84]. Concerted efforts
to generate mitochondrial COI barcodes for major insect or-
ders have led to broad coverage of insects of biosecurity con-
cern in both major public databases [58]; however, many ge-
ographic regions are still under-sampled (Fig. 3A) and ref-
erence sequences for alternative loci are mostly unavail-
able (Fig. 3B and C). While continued public submission and
high-throughput reference sequence generation [85] will in-
crease the representation of missing taxa and loci over time,
ensuring the quality of submitted sequences from correctly
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6 DNA metabarcoding for high-throughput insect surveillance

identified specimens is crucial [24]. There are numerous ex-
amples of barcode sequences being either insufficiently an-
notated [34], annotated with the incorrect species in public
databases [81, 86–89], or multiple morpho-species assigned
to the same DNA barcode, which may reflect misidentifica-
tions or the existence of species complexes [58]. These is-
sues highlight the importance of engaging taxonomic ex-
perts to ensure a priori identification of a specimen before
submitting a reference barcode to a public database [90,
91]. Furthermore, the use of non-destructive DNA extraction
methods when generating barcode sequences would allow
the retention of voucher specimens to ensure traceability
between the molecular and morphological features, espe-
cially in the case of taxonomic reassignments [92].
While some metabarcoding studies have responded to the
aforementioned issues by exclusively using in-house refer-
ence databases for taxonomic assignment [90, 93–95], be-
cause many insect surveillance programmes aim to detect
species that are not locally present, the reliance on public
data to supplement in-house sequences may be unavoid-
able. Some taxonomic classifiers used in metabarcoding
studies provide the option to weight classifications towards
certain reference sequences [96, 97], which could be bene-
ficial when combining high-confidence in-house sequences
with public sequences of more variable quality, or when the
endemic diversity for the target region is well character-
ized [74, 98]. Regardless of source, barcode sequences will
be compiled together and formatted appropriately for use
with automatic taxonomic classification software [99–101],
and this presents an ideal point where automated or semi-
automated curation methods can be used to identify and
remove any taxonomically mislabelled sequences or non-
homologous regions such as pseudogenes [74, 102]. Finally,
curated databases used in an active surveillance program
should only be updated after rigorous testing with standard-
ized datasets to ensure that assay results remain accurate
and reproducible following addition of new sequences [103].

Marker enrichment

Similar to conventional DNA barcoding, most metabarcoding
studies use a set of universal oligonucleotide primers to expo-
nentially amplify a target barcode marker until it reaches a con-
centration appropriate for sequencing. This “amplicon sequenc-
ing” methodology has proven reliable and sensitive for detec-
tion of low-abundance taxa in bulk samples [40]. However, dif-
ferential PCR amplification efficiencies between taxa generally
result in a biased depiction of relative abundances of commu-
nity members [104]. This bias is thought to mainly arise from
primer-template mismatches, particularly at the 3′ end of the
primer where extension takes place [64, 105] and therefore com-
prehensive in silico evaluation should be conducted at the begin-
ning of a project to ensure that primer sequences are appropri-
ate for the underlying target community [106–108]. Where mis-
matches with certain taxa are predicted to occur, inclusion of
degenerate bases can overcome taxonomic bias inherent to a
specific primer sequence [109, 110]; however, high levels of de-
generacy can also lead to undesirable off-target amplification or
formation of dimers [87, 111], which will require further labo-
ratory validation to detect [71, 109, 112]. In addition to the ef-
fects of PCR primers, a range of template-specific factors in-
cluding copy number of the loci [113], nucleotide composition

and secondary structure [114], variable amplicon lengths [115],
specimen biomass [116], and complexity of the species mix-
ture [105, 117] can further contribute bias. While the cumula-
tive bias from all these factors may suggest that amplicon se-
quencing can only be used for presence-absence data, impor-
tantly, sequencing reads are still correlated with DNA input in a
predictable way, and biases should only affect the slope of that
correlation [113]. Therefore the calculation of taxon-specific cor-
rection factors shows great promise for improving abundance
estimates from metabarcoding data [113, 118–120], particularly
for simpler communities such as those trapped using targeted
attractant lures [17]. Nevertheless, if accurate quantification is
essential for the surveillance programme, removing the PCR am-
plification process altogether should also be considered for im-
proving taxon abundance estimates from metabarcoding data.

PCR-free approaches

The major alternative to amplicon sequencing–based metabar-
coding involves simply fragmenting the genomic DNA extract
to lengths appropriate for the sequencing platform and directly
sequencing it without any prior bias-inducing enrichment step.
This methodology, termed “shotgun metagenomics,” generates
sequence reads comprising a random subsample of the mixed
community DNA and relies on the higher representation of tax-
onomically informative multi-copy mitochondria and nuclear
rRNA in this subsample to identify community members [121–
123]. In addition, these high-copy regions can be assembled
into long contigs and even full-length mitochondrial genomes
for further phylogenetic inference and systematics applications
[124, 125]. Despite this, restricting taxonomic analysis to just mi-
tochondrial and nuclear rRNA regions still leaves the vast ma-
jority of reads corresponding to DNA that is not taxonomically
informative or easily assembled from a bulk sample to be dis-
carded [121] and deep sequencing will be required to reliably de-
tect rare specimens in the community [125, 126]. While the rapid
growth in sequencing capabilities is making this brute force ap-
proach to community identification increasingly possible, for
routine surveillance a cost-effective method for enriching tax-
onomically informative loci should be used prior to sequencing.
A range of potential methods for PCR-free sequence enrichment
have been reviewed elsewhere (see Mamanova et al. [127] and
Jones and Good [128]), but some examples that have been suc-
cessfully used for metabarcoding include differential centrifu-
gation to enrich for mitochondria [129] or baiting target barcode
markers and whole mitochondria using hybridization probe cap-
ture [130–133]. Hybridization capture relies on the use of thou-
sands of synthetic oligonucleotide probes, each with strict com-
plementarity to a target sequence, and therefore should ideally
be designed with a priori knowledge of every target sequence
[128]. Although this may be a limiting factor for recovery of pre-
viously unsequenced diversity, the flexibility to include essen-
tially infinite numbers of probes provides further advantages for
building bespoke metabarcoding assays that capture diverse loci
for purposes beyond taxonomic inference (Box 2). Nevertheless,
while PCR-free approaches have shown improved correlations
between sequencing reads and input DNA [123, 134], it is im-
portant to remember that HTS counts molecules not individual
specimens [45] and therefore biases are likely to still remain due
to variation in biomass and copy number between organisms
and tissues [131, 134]. Furthermore, the process of PCR ampli-
fication is already widely accepted within diagnostics protocols
[49], and implementation of alternative PCR-free sequence en-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/8/8/giz092/5541630 by guest on 13 O

ctober 2019



Piper et al. 7

richment methods may require overcoming additional regula-
tory hurdles.

Box 2:
Modular metabarcoding assays

Many of the insect pests actively monitored by surveillance
programs are not targeted because of direct damage they
do to animals, plants, or the environment but instead the
associated fungi, bacteria, viruses, and viroids for which
they can be vectors [52, 135, 136]. Similar to identification of
insects, detection of host-associated pathogens has previ-
ously required screening of trapped samples on a specimen-
by-specimen basis using target-specific assays or culturing
and morphological analysis [33]; however, this is rapidly be-
ing augmented with metabarcoding and metagenomic ap-
proaches [33, 103, 137, 138]. The ability of HTS platforms to
sequence a heterogenous mix of loci opens up the opportu-
nity for combining both the identification of insects and the
screening of a diverse range of host-associated microbiota
within a single multiplexed metabarcoding assay [40, 139].
Nonetheless, developing an integrated assay that allows de-
tection and identification of biologically diverse organisms
in a diagnostics context presents a number of challenges.
Extraction techniques will need to be optimized to account
for the pathogen association with its insect host (i.e., intra-
cellular [140], external [141], gut-borne [142]), and specific
microbial life histories may make this incompatible with
non-destructive DNA extraction. Furthermore, PCR proto-
cols will need to be optimized to account for the large dif-
ferences in template quantity between abundant host DNA
and low-titre vectored organisms [143].
In contrast with the high resolution that COI provides
for identification of insects, the commonly used universal
markers for bacterial and fungal barcoding struggle to iden-
tify organisms to the species or strain level, which is neces-
sary to separate pathovars from common innocuous envi-
ronmental organisms [33, 136]. Therefore, diagnostic assays
that aim to be universal for identification of both host and
vectored organisms will require analysis of a range of group-
specific markers in multiplex, or make use of long-read HTS
platforms for increased taxonomic resolution [144, 145].
While multiplexing many loci together in single PCR reac-
tions can greatly simplify laboratory protocols and therefore
costs involved, for metabarcoding this can be complicated
by cross-reactivity between primers and individual primer
sensitivities changing depending on community composi-
tion [76, 105, 112]. As an alternative, various target loci could
be enriched in parallel reactions and then pooled together
by sample prior to library preparation in proportions rel-
ative to the number of reads desired for each marker [40,
146]. This highly flexible modular approach would then al-
low group-specific microbial primers or other markers of in-
terest to be added or retracted from the assay depending on
the target community and needs of the end user. For exam-
ple, Swift et al. [147] have demonstrated the ability of modu-
lar metabarcoding assays not just to identify cross-kingdom
species composition but also to genotype microsatellite loci
and sex-specific markers relevant to the community un-
der study. While the field of invasion biology has tradition-
ally been concerned with the transport and movement of
species, this doctrine overlooks the intraspecific movement
of genetic material such as pesticide resistance alleles [148],
transposable elements [149], and genetically modified or-

ganisms [150]. The ability to capture essentially any loci in
a modular metabarcoding assay may allow integration with
a more gene-focused model of biosecurity in the future.

Library preparation and multiplexing

Regardless of whether an enrichment or metagenomics ap-
proach was used, platform-specific sequencing adapters need
to be attached to the molecules (via ligation [151] or 1-step [152]
or 2-step PCR [40, 106]) to form “libraries” that can then bind
to the flow cell for sequencing (Fig. 4A). Because current HTS
platforms output sequences far in excess of what is required to
identify the taxa in a single community, metabarcoding studies
commonly multiplex many samples together on a single flow
cell and use oligonucleotide index sequences incorporated into
the sequencing adapters to link sequencing reads back to origin
sample. While a range of indexing strategies exist for HTS [153],
for sensitive diagnostics applications it is critical to choose an
approach that can adequately cope with the occasional recombi-
nation of these indices between molecules. Index-switching has
received particular recent attention due to reports of remarkably
high levels on current Illumina platforms [154]; however, similar
phenomena can affect multiplexed sequencing across all ma-
jor platforms to various degrees [155–159] (with the possible ex-
ception of recent MGI platforms [160]). Suggested causes include
contamination from residual adapter/primer oligonucleotides
[161], chimera formation during adapter PCR [162], mixed clus-
ters on the flow cell [157], or physical contamination during li-
brary preparation or oligo synthesis by the vendor [159, 163,
164]. Regardless of mechanism, when not properly controlled
for, index-switching can cause taxa from one sample to “bleed”
into others, and while this will only produce false-positive re-
sults for a taxon of concern when a true-positive result is present
in ≥1 of the samples, the spreading of positive signal across sam-
ples can imply that the taxon of interest has a larger geographic
distribution than exists in reality. Recent studies have demon-
strated that the most effective method for controlling for index-
switching is through the use of unique dual indices (Fig. 4C)
rather than the commonly used combinatorial indexing (Fig. 4B).
When unique dual indices are used, switching events at either
end of the molecule will generate an index combination that was
not originally applied and, during de-multiplexing, the reads
with mismatched indices to the sample sheet will be filtered into
an unassigned-reads file and excluded from analysis [159, 162,
165]. Furthermore, sets of indices should be alternated for each
sequencing run [51] because carryover of molecules between
runs on an HTS machine can be a further cause of false-positive
results in high-sensitivity sequencing applications [166]. Finally,
it is important that index sequences used are designed with suf-
ficient edit distance between them so that substitution or inser-
tion/deletion errors within the index do not cause further se-
quence misassignment [131, 167], particularly for higher error
rate platforms such as nanopore [115].

High-throughput sequencing platforms

While the rapid growth of HTS over the past decade has pro-
duced a variety of techniques and chemistries for discerning the
nucleotide sequence of a DNA molecule [168], modern platforms
can largely be divided into those producing short-but-accurate
sequences or long-but-error-prone sequences (Table 2). To date,
the majority of metabarcoding studies have been conducted us-
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Figure 3: DNA barcodes in public reference databases. (A) Global distribution of all sufficiently annotated DNA barcode records from BOLD and GenBank for all barcode
loci; records for all Insecta are displayed as a density map, while those species present on international pest lists are overlaid in red. (B) Distribution of records and

unique species within major public databases for the 10 barcode markers with the most reference information for entire Insecta and for (C) Insecta species present
on international pest lists.

ing the former, with the Illumina “MiSeq” dominating the re-
cent metabarcoding literature due to its high-quality reads and
relatively inexpensive purchase cost (Fig. 1B). Despite the cur-
rent popularity of the MiSeq for research studies, the cost per
sample may be impractical for the number of specimens pro-
duced by large-scale surveillance programmes, and instead the
production-scale Illumina “NextSeq,” “HiSeq,” and “NovaSeq”
provide progressive increases in throughput and therefore cost
reductions (Table 2). Nevertheless this increased sequencing
throughput of these platforms must be balanced with diagnos-
tic turnaround times, and effective use of the ultrahigh-capacity

HiSeq and NovaSeq flow cells will involve multiplexing of thou-
sands of samples, necessitating substantial logistical efforts in
sample collection and processing [103].

Despite the cost-effectiveness of the aforementioned plat-
forms, their restricted read lengths (Table 2) limit the taxonomic
resolution achievable with a metabarcoding assay and there-
fore long-read sequencing platforms such as the Pacific Bio-
sciences (PacBio) “Sequel” and Oxford Nanopore Technologies
(ONT) “MinION” and “PromethION” are becoming increasingly
attractive alternatives. The ability to sequence barcode regions
thousands of bases in length has potential to enable greater
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Figure 4: Unique dual indexing overcomes issues of cross-contamination due to index-switching. (A) An amplified barcode locus with sequencing adapters attached;
read locations and orientations are indicated for commonly used Illumina MiSeq platform. Reads 1 and 2 are designed to overlap to facilitate assembly into a consensus

sequence. Both sequencing adapters incorporate a unique oligonucleotide index sequence to allow differentiation of multiplexed samples. Strategies for indexing
include (B) combinatorial indexing, where indices on either end of the molecule are shared with other samples but the combination of the two is unique, and (C)
unique dual indexing, where adapter indices at both ends of the molecule are completely unique to the sample.

recovery of taxonomic diversity with intraspecific resolution
[169]; however, in practice the utility of long reads for species
identification has been limited by considerably higher per-base
error rates that commonly exceed intraspecific distance [115,
170]. Nevertheless, methods for repeatedly sequencing a sin-
gle molecule to create higher quality consensus sequences [171]
are now opening up applications in metabarcoding [144, 158],
with natively implemented circular consensus sequencing on
the PacBio Sequel producing consensus reads with similar accu-
racy to traditional Sanger sequencing [172], and third-party pro-
tocols mimicking this approach have now been published for the
ONT platforms [173, 174]. If similarly robust consensus sequenc-
ing can be achieved with nanopore technology, the significantly
smaller start-up cost and portability of the handheld MinION
platform may in future permit metabarcoding-based diagnos-
tics to be conducted in remote field sites [115], as well as enable
lesser resourced laboratories to access these technologies [14].

Bioinformatics

Computational processing of sequence reads represents a se-
ries of steps of equal importance to laboratory protocols for en-
suring accurate and sensitive detection of invasive species [175,
176]; however, many of the skills and techniques involved in this
process have not historically been required within diagnostic

laboratories. While there exist a number of popular end-to-end
computational pipelines for analysing marker gene data [177–
181], many of these have been designed for measuring diversity
rather than detection of low-abundance taxa. Each step in the
bioinformatic analysis can present trade-offs between sensitiv-
ity to rare taxa, amount of erroneous sequences retained, and
overall computing time [77, 175, 182–184], and use of metabar-
coding in an invasive species surveillance or other sensitive con-
text presents some unique challenges and regulatory require-
ments that may be best addressed through the creation of a cus-
tom analysis pipeline [146, 176].

De-multiplexing and sequence quality trimming
A metabarcoding assay typically involves multiplexing many
samples into a single pooled sequencing library in order to
make optimal use of the high-capacity flow cells of current
sequencing platforms. Therefore, the first step following se-
quencing (typically automated by the HTS platform’s software)
is to assign sequences back to their origin sample using unique
oligonucleotide sample indices incorporated into the sequenc-
ing adapters (Fig. 4). Following de-multiplexing, sequencing
adapters and any other non-biological information such as PCR
primer sequences are removed, and reads are assembled into
consensus sequences using their overlapping bases. While im-
provements in underlying sequencing chemistries and afore-
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mentioned consensus approaches means that the majority of
platforms now provide per base accuracies >99.99% (with the
notable exception of nanopore platforms) [168, 173, 185], when
put in context of the billions of bases sequenced on modern flow
cells, tens of thousands of sequences will still contain errors
[186]. Raw sequence reads are generated in conjunction with a
predicted error profile based on signal intensity and background
noise, and these data are generally presented to the user in the
form of a FASTQ file [187]. An initial quality-trimming stage uses
this profile to truncate or remove sequences that contain exces-
sive ambiguous or low-confidence base calls [186, 188]; this is,
however, a coarse filtering process where parameters should be
carefully considered, particularly for higher error platforms such
as nanopore. While strict quality trimming will more effectively
remove sequencing artefacts and erroneous reads that can af-
fect downstream diversity and abundance estimates, overly con-
servative parameters can result in removal of too many reads
and therefore loss of sensitivity to low-abundance taxa [146,
176].

OTU clustering and denoising
While quality trimming can improve accuracy by removing se-
quencing errors, the PCR amplification process used in the ma-
jority of metabarcoding studies can further introduce single-
base substitutions [158, 189] and length variation [190] that will
not necessarily be associated with low quality scores [191]. Be-
cause these noisy sequences can cause spurious results and
substantially increase downstream computation, many stud-
ies cluster together all sequences within an arbitrary similar-
ity threshold (commonly 97%) into representative bins called
“operational taxonomic units” (OTUs). While the 97% similarity
threshold is thought to represent a broadly generalizable com-
promise between interspecific and intraspecific variation and is
commonly used to indicate distinct taxa [192, 193], actual coales-
cent depths between species can differ greatly across taxonomic
groups [91]. Therefore when a single global threshold is applied
to diverse communities it can result in both the splitting of a sin-
gle species across multiple OTUs, as well as the lumping of mul-
tiple species into the same OTU, resulting in false-negative re-
sults [176, 194]. Furthermore, aggregating all similar sequences
into a single OTU loses all information on intraspecific diversity,
restricting the ability to trace the geographic origin of invasive
populations [39, 79]. In addition, the OTUs generated by cluster-
ing are dependent on the particular dataset, reference database,
and parameters selected [194, 195], and as such they do not lend
themselves to ongoing comparison with the constantly evolv-
ing data produced by a longitudinal surveillance programme.
To overcome the aforementioned limitations, newly developed
“denoising” algorithms instead use statistical models to infer
true biological sequences from sequencing noise and correct
for single-nucleotide differences, without imposing the arbitrary
similarity threshold that defines OTUs [196–198]. This single-
nucleotide resolution enables binning sequences into “amplicon
sequence variants” (ASVs) [196] (also termed “exact sequence
variants” [194], sub-OTUs [197], or zero-radius OTUs [zOTUs]
[198]) that retain precise haplotype information that can be nec-
essary for diagnostics of closely related taxa or tracking an inva-
sion [199], and act as a consistent label between analyses [194].

OTU quality control
While the above measures account for the majority of low-
abundance errors, they are not designed to deal with high-
abundance artefacts such as PCR-generated chimeras and non-
specific amplification products. Chimeric sequences are the re-

sult of incompletely extended PCR products acting as primers
for a different closely related sequence [189], and therefore ap-
pear as concatenated products of 2 parent sequences. Assuming
that parent sequences will be more abundant having undergone
more rounds of amplification, chimeras can be algorithmically
removed through comparison with other sequences in the sam-
ple [196, 200] or with a chimera-free reference database [201].
On the other hand, removing products of non-specific amplifi-
cation such as intragenomic variants and pseudogenes presents
more of a challenge and will generally require manual curation
[151, 202]. When targeting protein-coding mitochondrial genes
such as COI, the presence of stop codons and frameshifts that
disrupt the open reading frame are common indicators of pseu-
dogenes [80], and for rRNA markers secondary structure predic-
tion could be used to ensure that sequences do not contain sub-
stantial variation in highly conserved regions [203]. Because it
is inefficient to include a manual curation process as part of a
high-throughput bioinformatics pipeline, it would be beneficial
for future denoising algorithms to incorporate patterns of se-
quence evolution to allow more precise and automated filtering
of barcode loci from erroneous and pseudogenic sequences [80,
204, 205].

Taxonomic assignment
In order to process the large diversity of sequences that a
metabarcoding assay typically produces, the assignment of Lin-
naean taxonomy (e.g., species, genus) is typically conducted in
an automated manner. While a large range of software tools ex-
ist for this purpose [206], the approaches used can generally be
delineated into either sequence similarity searches (i.e., BLAST
alignment), sequence composition methods (i.e., hidden Markov
models and k-mer counts), phylogenetic methods, or a hybrid
of the above (see Bazinet and Cummings [207] for an in-depth
comparison). To date, the most widely used approach for taxo-
nomic classification in metabarcoding studies has been best-hit
classification using alignment based tools such as BLAST [208],
which assume that the taxonomy of the query sequence will be
identical to the taxonomy of the most similar sequence in a ref-
erence database. While this approach is simple to implement
and can perform effectively when the reference database con-
tains sequence information from conspecifics, when reference
data are absent or when the particular loci cannot distinguish
between multiple organisms, best-hit classification is prone to
over-classifying the sequence to incorrect species-level taxon-
omy [209]. In the worst case, this over-classification error could
lead to false-positive results by classifying a previously unse-
quenced but probably innocuous organism as a known pest, ow-
ing to the pest being the closest taxon with an existing reference
sequence [210].

As the above situation demonstrates, for applications where
management decisions are to be based on the results of a taxo-
nomic classification, a central question is the reliability of that
classification. A number of taxonomic assignment algorithms
aim to address this issue by returning a measure of confidence
of inclusion in each taxonomic rank, e.g., by using repeated ran-
dom sampling [97, 211], lowest common ancestor methods [212],
or probabilistic models [96, 213]. In an ideal case, only a sin-
gle possible taxonomic outcome will obtain a high level of con-
fidence, whereas alternate outcomes will obtain probabilities
close to zero. In cases where there may be uncertainty at the
species or genus level due to imperfect reference data and mul-
tiple taxonomic outcomes obtaining similar probabilities, the
sequence may still be robustly assigned to a higher taxonomic
rank (e.g., family) [101], providing important information about
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sample composition and possible presence of novel taxa without
producing false-positive results [214]. While using measures of
confidence can reduce the incidence of over-classification, many
of these approaches are impaired by an inherent bias in that
they infer the entire scope of possible taxonomic outcomes ex-
clusively from the reference sequences used for training [215,
216], which in reality only represents taxonomic units that have
been previously sequenced. In contrast, the Bayesian framework
of PROTAX [96] accepts a reference taxonomy tree alongside the
reference sequence database in order to account for taxa that
are present in Linnaean taxonomy but not represented by ref-
erence sequences. Furthermore, PROTAX explicitly models the
probability that a sequence belongs to a taxon that is novel to
both the reference sequence database and reference taxonomy,
which could be particularly important when conducting surveil-
lance in regions with substantial uncharacterized biodiversity
[216, 217]. Nevertheless, even the most complex taxonomic as-
signment algorithms do not model important aspects of species
biology that may limit the possible geographical distribution or
habitat in which they could reasonably exist, and therefore the
results of taxonomic assignment should be vetted with ecologi-
cal knowledge of the detected species where possible [35].

Quality assurance
The ability to simultaneously identify many loci from thousands
of specimens in a single diagnostic assay underlies the power
of the metabarcoding approach to surveillance; however, the re-
sulting increase in sequence diversity and analytical complexity
introduces further risk of cross-contamination and technical er-
ror [55]. An important challenge for the use of metabarcoding
in a diagnostic context is the rate of false-positive errors (in-
correct identification of an insect as the pest of concern) and
false-negative errors (not identifying a pest of concern). While
many ecological studies prioritize minimizing false-positive er-
rors over false-negative errors [37], generally the precautionary
principle applies in biosecurity; i.e., it is better to have a false-
positive result that can be followed up with an orthologous con-
firmation method than to miss a serious pest. This is particularly
important if the assay is to provide “evidence of absence” to sup-
port pest-free status [218], which can be required to access cer-
tain international markets [28]. Therefore, a quality assurance
system for metabarcoding diagnostics should aim to reduce the
frequency of false-positive results as much as possible through
the appropriate use of controls, replication, and validation, with-
out in turn increasing the incidence of false-negative results.

Controls and replication
The majority of contamination in next-generation sequencing
assays is expected to arise from other samples processed in the
same laboratory environment, particularly when PCR is involved
[164, 219], and therefore workspaces should be physically or
temporally separated for different assay steps, with all surfaces,
equipment, and reagents regularly decontaminated [33, 219–
221]. Periodic swipe tests of laboratory surfaces can help iden-
tify common laboratory contaminants and confirm the absence
of environmental DNA from target pests [220, 222]. Despite these
precautions, even the cleanest laboratory environment will not
account for all possible contaminant sequences and therefore
no-template controls should be included throughout the en-
tire laboratory workflow and sequenced alongside the sample
libraries to provide a cumulative measure of contamination [162,
223, 224]. When these controls are incorporated sequentially at
each step of the laboratory protocol they can further enable par-
titioning of contamination to the stage in the workflow where it

occurred, which can highlight processes that can be improved
during assay development [35, 37]. Index-switching is perhaps
the most worrisome cause of contaminating sequences in HTS,
and while use of unique dual indices (Fig. 4C) can reduce this
phenomenon to a level acceptable for most studies, trace lev-
els of index-switching can still persist and cause issues for sen-
sitive diagnostic applications [159]. While index-switching arte-
facts will be detectable in no-template controls, it can be difficult
to discern this phenomenon from sequences arising through
physical contamination. Instead, including a positive control li-
brary made up of synthetic standard DNA [177, 225, 226] or an
“alien” taxon guaranteed to be absent from the sample [88, 227]
allows empirical measurement of the index-switch rate. Alter-
natively, the rate of index-switching can be measured post hoc
by comparing read counts between valid and invalid combina-
tions of unique dual indices [131, 228]. Once contaminant se-
quences have been identified, their presence can be controlled
through the application of a minimum abundance filter based
on the read counts within negative and/or positive control li-
braries [35, 229], although choice of an appropriate threshold
can be complicated by read depth differences between samples
and preferential amplification of contaminants in low-biomass
no-template control samples [175, 230]. As an alternative, new
statistical methods allow systematic removal of contaminant
sequences based on co-occurrence patterns and library quan-
tification data [231–233]; however, if particularly high levels of
contamination or abnormally high rates of index-switching are
detected in a specific batch of samples, it may be more appro-
priate to repeat the assay. Finally, including an additional posi-
tive control in the form of a well-characterized mock “calibration
community” in every sequencing run could further highlight
any additional run-specific aberrations or batch effects that may
have been introduced during the metabarcoding workflow when
taxonomic composition or error rates deviate strongly from ex-
pected [205, 234, 235].

In addition to being prone to contamination, library prepa-
ration protocols involve a series of molecular bottlenecks where
during each subsequent stage of DNA extraction, target enrich-
ment, and binding of molecules onto the flow cell, only a random
subsample of molecules are taken forward [37]. Stochasticity in
this sampling process is likely to bias the resulting sequences to-
wards more abundant taxa and increase the false-negative rate
for rare taxa [236], and this can be further exacerbated by neg-
ative primer bias [77]. Potential loss of rare taxa during sample
processing can be offset through the use of technical replicates,
and these provide a further avenue to identify laboratory cross-
contamination in the case that replicates show significant dis-
similarities in taxonomic composition [77, 229, 237]. While us-
ing higher numbers of replicates can increase the probability of
detecting rare taxa [237], this must be weighed against the in-
creased costs of sequencing and library replication as well as the
strategy for processing the replicates [37]. Additive processing
(i.e., pooling the detections of all replicates) can be most useful
for overcoming sampling stochasticity and controlling for false-
negative results, while restrictive processing (i.e., only retaining
sequences present in several replicates) more effectively con-
trols for cross-contamination. To balance the positives of both
approaches, it may be best to include a minimum number of
technical replicates to allow a majority-rules approach (e.g., 2/3
replicates count as a detection) [77, 88, 112]. A further aspect to
consider is the importance of biological replicates at the sample
collection stage [238] because regardless of the effectiveness of
the metabarcoding diagnostic assay, if an insect is not caught in
a trap, it does not necessarily mean absence in the area. The use
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of site occupancy models that account for the false-positive– and
false-negative–prone nature of metabarcoding surveys could be
used to determine the optimal number of both technical and
biological replicates to reach the desired statistical power for
the survey [239, 240]. Finally, while outside the scope of this re-
view, appropriate trap design [241] and surveillance grid plan-
ning [242] must also be adhered to for effective metabarcoding-
based surveillance.

Validating metabarcoding assays
Because of the relevance of many invasive insects to inter-
national trade and human health, laboratories conducting in-
sect diagnostics generally exist within strict regulatory environ-
ments. As part of laboratory accreditations, newly developed as-
says are required to undergo a validation process in order to
provide objective evidence to all end users that an assay is fit
for purpose [53, 54, 243, 244]. Traditionally, validation first in-
volves defining the scope of the assay and then establishing
performance parameters such as analytical sensitivity, analyti-
cal specificity, reproducibility and repeatability for every individ-
ual target designated in this scope [26, 244, 245]. However, the
universal nature of metabarcoding assays and the taxonomic
diversity of potential surveillance catch make this impractical
[246]. To overcome this inevitable variation between reference
samples and reality, a flexible scope validation process should
be used to establish performance parameters on representa-
tive samples and identify critical steps in the workflow where
variation can be introduced [146, 247]. These critical steps can
then be monitored run to run using control samples and ap-
propriate quality control checkpoints (Table 3) to ensure that no
sample or sequence data continue without meeting minimum
quality requirements [51, 221, 247, 248]. In the case of insect
metabarcoding, mock communities made up of the taxonomic
groups of interest are generally used for validation, which are
then spiked with decreasing concentrations of target species in
order to establish assay sensitivity and limits of detection [40,
249]. Because DNA extraction efficiency and primer bias can be
affected by overall community complexity [105, 250], mock com-
munities should as closely as possible represent the diversity
expected to be recovered in different trapping scenarios. Fur-
thermore, the amount of sequencing effort assigned to an in-
dividual sample during multiplexed sequencing can vary across
runs [224, 251], and the effect of sequencing depth on detection
should also be established using rarefaction curves [107, 117].
On the other hand, analytical specificity will generally depend
on choices made during assay design, such as the choice of tar-
get marker, availability of appropriately annotated reference se-
quences for the chosen marker, and taxonomic assignment cri-
teria used [220, 246]. Parameters such as precision and repro-
ducibility of a metabarcoding assay can be established similar to
other molecular diagnostics, through replication of samples and
controls within and across sequencing runs and inter-laboratory
comparisons [146]. Finally, stability of specimens and DNA to en-
vironmental factors such as temperature, UV radiation, pH of
commonly used drowning or attractant solutions (e.g., vinegar
traps [252]), and exposure to environmental microorganisms in
the field and during storage [253] should be evaluated and may
prompt a need for redesign of insect traps to collect and preserve
samples in a manner more suited to DNA-based identification.

Reporting and confirming detections
Even when primers are designed around a specific taxonomic
group, metabarcoding can amplify and detect many more taxa
outside the scope of the original validated target list [254]. How

these incidental detections are reported and eventually acted
upon will present a major challenge to diagnostic laboratories
and end users, due to the increased number of previously un-
documented taxa being discovered for which knowledge of dis-
tribution or ecological significance may be missing [51, 53]. Many
of these incidental detections will be taxa that simply have not
previously been searched for, and when an appropriate manage-
ment response is considered, it will be important not to conflate
“first detection” in an invasion biology sense, where there was
prior evidence of absence, with merely the first time a species
has been formally identified in a region [255]. Hence a greater
emphasis needs to be placed on conducting baseline surveys to
establish comprehensive species checklists of endemic diversity
and resolve synonymous taxa at the beginning of a surveillance
programme to avoid creating sudden market access and trade is-
sues [256]. Furthermore, a decision framework should be devel-
oped for evaluating incidental detections that sets out steps for
further characterization and risk assessment for the detected or-
ganisms in order to establish whether eradication or other man-
agement actions are appropriate or achievable [257]. Where nec-
essary, putative detections can be further confirmed using an
orthogonal diagnostic method such as quantitative PCR/droplet
digital PCR on the original DNA extract [146]; however, these as-
says require prior development and will therefore not be avail-
able for all incidental taxa detected in a metabarcoding assay. In-
stead, the use of non-destructive DNA extraction methods that
use a combination of enzymes, buffers, and heat without me-
chanical homogenization [227, 258–260], or even amplification of
insect DNA from the ethanol used to preserve specimens [261–
264], would enable diagnosticians to revisit original samples fol-
lowing metabarcoding to confirm species detections. Develop-
ment of a non-destructive metabarcoding assay has great po-
tential for bridging the gap between new HTS methods and tra-
ditional entomological techniques and may bootstrap the ac-
ceptance of metabarcoding into international regulatory frame-
works.

Perspectives and conclusions

The ability to accurately, rapidly, and cost-effectively deter-
mine the species composition of bulk insect trap contents us-
ing metabarcoding has the potential to revolutionize broad-
spectrum surveillance for invasive insect pests. Similar to any
novel technology, as metabarcoding transitions from purely re-
search to management applications it faces the growing pains
that come with integration into established regulatory struc-
tures. While rigorous standardization of both laboratory tech-
niques and data analysis has proven essential for the acceptance
of conventional DNA barcoding as a validated diagnostic for in-
sects of regulatory concern [26, 79], the sheer pace of develop-
ment of HTS technologies and platforms may complicate simi-
lar standardization of metabarcoding protocols. Historically, the
effective lifespan of many HTS platforms has only amounted to
a few years before obsolescence [168], and laboratory protocols
and bioinformatic methods are therefore constantly evolving to
chase this moving target. In response to this constantly shift-
ing state of the art, harmonization efforts by regulatory bodies
should avoid the over-prescription of restrictive standards into
law because these will quickly become outdated and risk further
widening the gap between research and diagnostics capabilities
[46]. Instead, development and distribution of certified reference
materials in the form of standard and diverse mock commu-
nities or DNA standards (similar to the ZymoBIOMICS micro-
bial mock community standards [265]) as well as computational
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Table 3: Recommended quality control checkpoints for metabarcoding-based diagnostics

Category Quality control checkpoint Consequences

Laboratory
preparedness

Are all reagents within expiry date and stored
properly?

Poor reagent storage can lead to reduced efficiency and
false-negative results

Is equipment appropriately maintained and
calibrated?

Poorly calibrated equipment will generate inconstancies
and inaccurate data

Have laboratory surfaces been decontaminated
and swipe testing of laboratory surfaces been
conducted?

Dirty laboratories can be a source of DNA contamination,
leading to lowered sensitivity or false-positive results

Sample acceptance Have specimens arrived in a condition
appropriate for extracting DNA?

Inappropriately stored specimens can lead to
false-negative results and a reduction in sensitivity

Are specimens traceable to origin location? Misidentification of sample origin can complicate
detection response

Nucleic acid extraction Is DNA of sufficient quantity and quality? Insufficient DNA quantity or presence of contaminants
can inhibit reactions and result in false-negative results

Marker enrichment Are the correct fragment sizes present for the
target barcode marker?

Incorrect fragment sizes could indicate off-target
amplification

Have the positive control samples successfully
amplified?

Absence of product in positive controls indicates
amplification failure

Are negative control samples free of DNA
fragments?

Visible DNA fragments in negative controls indicates
contamination

Library preparation
and multiplexing

Are libraries of the appropriate size and
concentration?

Libraries of significantly different sizes or concentrations
will complicate multiplexing

Have sets of unique dual indices been used? Unique dual indexing is necessary to control for
index-switching

Have index sets been alternated since the
previous sequencing run?

Cross-contamination of libraries between sequencing
runs can cause false-positive results

High-throughput
sequencing

Has the pooled library been appropriately sized
and quantified?

Inaccurate sizing and quantification can cause
overloading of flow cell and failed runs, or underloading
and low data output

Has the sequencer been appropriately cleaned
between runs?

Insufficient cleaning of the sequencer can result in
cross-contamination between runs

De-multiplexing and
quality trimming

Has minimum sequencing depth been achieved
for each sample?

Low sequencing depth can cause false-negative results

Are an appropriate number of reads passing
quality filtering?

Low numbers of reads passing quality filters can indicate
issues with sequencing run and result in false-negative
results

OTU clustering and
denoising

How much of the original data are explained by
the final OTUs/ASVs

Lower-than-expected sequences can indicate overly
restrictive bioinformatics parameters

Have chimeras and sequences with disrupted
open reading frames been checked for? (for
protein coding genes)

Chimeras and pseudogenes can inflate taxonomic
diversity, leading to false-positive results

Taxonomic
assignment

Has the reference database been curated to
remove mislabelled taxonomy and pseudogenic
sequences?

Mislabelled reference sequences can lead to both
false-positive and false-negative results

Has the taxonomy been applied with appropriate
confidence levels?

Low-confidence assignment indicates incomplete or
erroneous reference database

Interpretation of
results

Have the taxa received an appropriate number of
reads to pass detection threshold?

Taxa under detection threshold could represent
laboratory or reagent contamination, or erroneous
sequences that have not been sufficiently controlled for

Has a minimum detection threshold been
applied to remove index-switching?

Index-switching can cause spreading of taxa to other
samples and result in false-positive results

Are there any taxa that need to be confirmed
with alternative methods?

Any high-risk putative detections should be confirmed
with alternative method before reporting, if possible

Reporting and sign-off Have any exceptions to laboratory standard
operating procedure been made?

Non-compliances with standard operating procedure
should be highlighted, and diagnostic confidence may be
reduced

Have data been stored appropriately? Archiving of data allows future re-analysis in case of
disputed results

Have results been signed off by competent
individual?

Incorrect reporting or interpretation of significant taxa
can lead to incorrect managment response

datasets [266] would enable benchmarking of laboratory and
computational methods and begin to characterize the sources

of technical variation between laboratories [267, 268]. This could
be further developed into an inter-laboratory proficiency testing
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program where blinded reference samples are periodically dis-
tributed for analysis, in order to demonstrate to all stakehold-
ers that an assay is fit for purpose for detecting invasive insect
species [248, 269]. The results of these processes would allow
further development of best-practice technical guidelines and
begin to harmonize approaches across the wider metabarcod-
ing community [270].

Biosecurity and pest management decision making is still
largely reliant on the application of a species name to a speci-
men barcode sequence [81], and issues of mislabelled sequences
in public reference databases (Box 1) highlight the importance of
maintaining expertise in taxonomy and classical diagnostics to
complement high-throughput approaches. Owing to the incom-
plete nature of reference databases, much of the sequence data
currently produced by metabarcoding assays will consist of in-
sufficiently identified sequences [84]. While some of these will
no doubt be the result of sequencing errors making it through
quality control, many more will represent real taxa and re-
flect the further work required to more completely describe
and acquire reference data for insect biodiversity. Monitoring
programs for biological invasions are at their most informative
when they are continuous and long term [271, 272], and it would
be beneficial for these insufficiently identified sequences to be
integrated into reference databases and tracked across analy-
ses and timepoints. Porter and Hajibabaei [84] have highlighted
the advantages that ASVs provide over more traditional OTU
methods for consistent labelling of insufficiently identified se-
quences, and embracing non-destructive DNA extraction tech-
niques would further enable taxonomists to verify these se-
quences using morphological methods and potentially locate
previously unbarcoded taxa or novel species, which could then
feed back into reference databases [259]. Conventional DNA bar-
coding and morphological taxonomy currently benefit from a
close and reciprocal interaction [273], and we envision a sim-
ilar relationship for the future of insect metabarcoding. This
ability to systematically reanalyse historical datasets with im-
proved reference databases, bioinformatic tools, and biological
knowledge presents a major strength of HTS diagnostics [51],
and therefore raw datasets should also be archived alongside
relevant technical and environmental metadata in a machine-
readable format [195]. However the datasets from ongoing lon-
gitudinal surveillance quickly amount to terabytes of data [274],
the storage, management, and securing of which will require
dedicated infrastructure and personnel [53]. Unlike the current
drive for open sharing of data in academic research, concerns
of misuse harming the international movement of goods means
that historically the release of raw diagnostic data to the public
has not been common [51]. However, a pathway for declassify-
ing and releasing these data to researchers should be developed
because the mass of community-level information generated by
metabarcoding bio-surveillance shows great potential for gen-
erating new insights into the process and impacts of biological
invasion [275].

In an increasingly globalized world, more effective and scal-
able utilization of surveillance effort will be required to manage
the spread and establishment of invasive species. While broad-
spectrum approaches to surveillance have historically been lim-
ited by the overwhelming amount of diagnostics work gener-
ated, metabarcoding-based diagnostics fundamentally change
this dynamic by allowing entire communities of diverse organ-
isms containing target pests, endemic species, and unexpected
invaders to be simultaneously identified [41]. While present
costs of technological investments may currently limit the up-
take of HTS tools to only well-funded core diagnostic labora-

tories, we expect that developments in portable real-time se-
quencing will further enhance the availability of these tools to
a much wider user-base worldwide. Furthermore, it is conceiv-
able that the ongoing miniaturization of sequencers may syn-
ergize with advances in microfluidic and lab-on-a-chip tech-
nologies [276] to produce a new generation of metabarcoding-
based “smart traps” for remote monitoring [277, 278]. Neverthe-
less, metabarcoding forms just a single component of a larger
biosecurity toolbox that contains not only fast, cost-effective,
and reliable means of diagnostics but also predictive models,
improved risk forecasting, field-tested tools, and an overarching
decision support system [46, 52, 135, 137]. The future of biosecu-
rity surveillance and pest management is a distinctly interdisci-
plinary area, and we encourage future research to involve closer
collaboration between academic scientists, diagnosticians, and
the end users who rely on effective surveillance data to manage
the spread of invasive pests and pathogens.

Methods

All articles containing ”Metabarcoding” in their abstract, title, or
keywords were retrieved from the Scopus, PubMed, and Crossref
citation databases on 20 June 2019 using the rscopus [279], ren-
trez [280], and fulltext [281] packages in R 3.5.3 [282]. Duplicated
article entries were detected using fuzzy string matching func-
tions from tidystringdist [283], and filtered out using dplyr [284].
All articles containing keywords in their title or abstract indica-
tive of invasive species or sequencing platform used (see supple-
mentary table 1 for full list of keywords) were then represented
graphically by year of publication using ggplot2 [285]. A list of
global insect pests was then retrieved from Ashfaq et al. [58] and
combined with additional pests of concern for Australia [286].
This list was filtered to retain only unique and complete genus
species binomials, retaining 558 species, for which all records for
these species and the entire Insecta were retrieved from BOLD
using the bold package [287]. The list of genes successfully re-
trieved from BOLD used to query GenBank and all records for
species on the pest list and the entire Insecta were retrieved us-
ing the Rentrez R package [280]. Records from all databases were
combined and specimen collection information was extracted
using R and the biofiles package [288]. Of the 5,589,069 records
for all loci in the datasets, 4,603,488 were annotated with lat-
itude and longitude information and these were plotted on a
world map using ggmap [289]. The number of overall records and
unique species within all datasets were then plotted for the top
10 occurring loci.

Availability of supporting data and materials

A snapshot of the datasets and R markdown documents imple-
menting the analyses contained in this manuscript are available
in the Zenodo repository [290].

Additional files

Supplementary table 1: Keywords used to filter articles
Supplementary information 1: Reproducable R code used to

conduct analyses and produce figure 1
Supplementary information 2: Reproducable R code used to
conduct analyses and produce figure 3
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